ORGANIC CHEMISTY QUESTION

Author: *Kaju Burfi*Date: Mar 2025

REMARK: This is a flowchart-type question, made by myself. Writing this down in typst is mostly for rememberance purposes.

It contains concepts from Class XI and XII of Organic Chemistry.

Question

Consider the preparation of several reagents used:

$$\text{FeSO}_{4} \xrightarrow{\Delta} \alpha \xrightarrow{\text{HCl}} \mathbf{R}_{1} \tag{1a}$$

•

$$Ag + HNO_3 \xrightarrow{\Delta} \beta \xrightarrow{NH_{3+}H_2O} R_2$$
 (1b)

$$B_1 \xrightarrow{\text{NaOH} + \text{Cl}_2} R_3 \tag{1c}$$

$$E \xrightarrow{\text{HIO}_{4}} \gamma \xrightarrow{\text{(ii) NaBH}_{4}} \text{(ii) Red P,Br}_{2} \xrightarrow{\text{(iii) Mg, Dry Ether}} R_{4}$$

$$\xrightarrow{\text{(iv)F}_{1},H^{+}} \text{(v)P}_{4}O_{10},\Delta$$

$$(1d)$$

In Equation 1a, α is the only solid product. In Equation 1d, γ is the product that has molecular weight equal to 30 g mol⁻¹(Only the substance with this molecular weight is separated and subjected to the other reagents.)

Note that in the above equations, B_1 , E and F_1 are products that are obtained in the following organic reactions. Compound A is 3,7-dimethylocta-2,6-dien-1-ol.

$$\begin{array}{c} A \xrightarrow{Thionyl\ Chloride} B \xrightarrow{(i)PBA} C \xrightarrow{(i)Mg} D \xrightarrow{NaOH} E \xrightarrow{CrO_3 \cdot \ py} F \xrightarrow{Cu} G \xrightarrow{MeMgBr\ + \ CuI} \\ \\ \cdots H \xrightarrow{Peracetic\ Acid} I \xrightarrow{NaBH_4} J \xrightarrow{\Delta} K \xrightarrow{N\ bromosuccinimide} L \end{array}$$

Figure 1: Reaction Series 1

Consider another sequence of reactions:

$$\begin{array}{c} H \xrightarrow[(ii)\text{Zn/H}_2\text{O}]{\text{(ii)}\text{Zn/H}_2\text{O}} \xrightarrow[\text{mixture}]{\text{Excess dil. NaOH}} \xrightarrow[(excess)]{\text{Excess}} C_1 \xrightarrow[(excess)]{\text{SeO}_2} D_1 \xrightarrow[(excess)]{\text{HIO}_4} E_1 + F_1 \\ \\ E_1 \xrightarrow[\Delta]{\text{NH}_3} G_1 \xrightarrow[]{\text{NaOH}} +\text{Br}_2 \\ \end{array}$$

Figure 2: Reaction Series 2

Here, F_1 is a gaseous product(used in the preparation of reagent R_4 in Equation 1d). In the mixture $A_1 + B_1$, A_1 does not give the iodoform test, while B_1 gives yellow precipitate on reaction with $NaOH + I_2$.

Further,

$$G \xrightarrow[H^+/H_2O]{R_2} A_2 \xrightarrow[Pd-C]{H_2} B_2 \xrightarrow[H^+/H_2O]{Red P, Br_2} C_2 \xrightarrow[\Delta]{Sodalime} D_2 \xrightarrow[\Delta]{Alc. KOH} E_2 \xrightarrow[M^+/H_2O]{Sulphuryl Chloride} F_2$$

$$\xrightarrow[H^+/H_2O]{t-BuO^-K^+} G_2 \xrightarrow[+R_3]{NaOH, \Delta} H_2 \xrightarrow[(ii)D_2]{t-BuO^-K^+} I_2 \xrightarrow[H^+/H_2O]{R_4} J_2 \xrightarrow[H^+/H_2O]{R_4} K_2$$

Figure 3: Reaction Series 3

Here, H_2 is a mixture of two major isomeric compounds. Hence, I_2 , J_2 , K_2 will also be a mixture of those isomers.

Identify the structures of compounds M, I_1, K_2 (a mixture). Also list all aromatic compounds formed.

SOLUTION

Reaction Series 1:

SOCl₂

$$(i)Mg$$

$$(i)Mg$$

$$(ii)H^{+}/H_{2}O$$

$$(iii)H^{+}/H_{2}O$$

$$(i$$

Reaction Series 2:

$$(i)O_3$$

$$(i)Zn/H_2O$$

$$(i)O_3$$

$$(i)D_1/H_2O$$

Now moving on to the inorganic reactions,

$$\text{FeSO}_{4} \xrightarrow{\Delta} \text{Fe}_{2} \text{O}_{3} \xrightarrow{\text{HCl}} \text{FeCl}_{3} \tag{2a}$$

$$\mathrm{Ag} + \mathrm{HNO_3} \xrightarrow{\Delta} \mathrm{AgNO_3} \xrightarrow{\mathrm{NH_{3+}H_2O}} \left[\mathrm{Ag(NH_3)}_2\right] \tag{2b}$$

$$\xrightarrow{\text{NaOH} + \text{Cl}_2} \text{CHCl}_3 \tag{2c}$$

$$E \xrightarrow{HIO_4} HCHO \xrightarrow{\begin{subarray}{c} (i)NaBH_4\\ (ii) Red P,Br_2\\ \hline (ii) Mg, Dry Ether\\ (iv)CO_2,H^+\\ (v)P_4O_{10},\Delta \end{subarray}} \begin{subarray}{c} (2d)$$

Finally, Reaction Series 3:

Tollen's Reagent
$$H_2$$
 H_2 H_2