Question 7
One way to find the moment of inertia of an ellipse

Q7. Find the moment of inertia of an ellipse (lamina) about an axis passing through the centre, perpendicular to the lamina. Consider the ellipse to have semi minor axis of length \(b\), and semi major axis of length \(a\).


Idea:

There are many methods to find the moment of inertia. Here, we shall find the corresponding moments of inertia about the X axis and the Y axis, and use perpendicular axis theorem to find the moment of inertia about the Z axis. We shall work in Cartesian coordinates.


Solution:

The equation of the given ellipse is

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]

Which can be written as,

\[x = \frac{a}{b} \sqrt{b^2 - y^2}\tag1\]

The moment of inertia of any body is generally given by,

\[I = \int_{Body} r^2 dm\]

Here, \(dm\) will be,

\[dm = \sigma dA = \frac{m}{\pi a b} dx dy\]

Where, \(\sigma\) is the superficial density.

Hence, we can write,

\[I_{XX'} = \int_{-x}^{x} \int_{-b}^{b} y^2 \frac{m}{\pi a b} dx dy\]

Where, \(x\) is given by eq. (1).

\[\implies I_{XX'} = \int_{-b}^b \frac{2}{b} \sqrt{b^2 - y^2} \; y^2 \; \frac{m}{\pi b} dy\]

\[I_{XX'} = \frac{2m}{\pi b^2} \int_{-b}^b y^2 \sqrt{b^2 - y^2} \; dy\]

Steps for integral


\[\int_{-b}^b y^2 \sqrt{b^2 - y^2} \; dy\]

We shall use a substitution,

\[y = b \sin \alpha\]

\[\implies dy = b \cos \alpha d \alpha\]

And corresponding change of limits, we get

\[= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} b^2 \sin^2 \alpha ( b \cos \alpha) \; b \cos \alpha d \alpha\]

\[= b^4 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 \alpha \cos^2 \alpha \; d \alpha\]

Multiplying and dividing by 4 to use,

\[4\sin^2 \alpha \cos^2 \alpha = \sin^2 2 \alpha\]

\[\sin^2 2 \alpha = \frac{1 - \cos 4 \alpha}{2}\]

\[= \frac{b^4}{4} \left( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} d \alpha - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{cos 4 \alpha}{2} d\alpha \right)\]

\[= \frac{b^4}{4} \left( \frac{\pi}{2} - \frac{1}{8} \sin 4 \alpha \Bigr|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \right)\]

\[= \frac{b^4}{4} \left( \frac{\pi}{2} - 0 \right)\]

\[\implies \int_{-b}^b y^2 \sqrt{b^2 - y^2} \; dy = \frac{\pi b^4}{8}\]


Which gives,

\[I_{XX'} = \left( \frac{2m}{\pi b^2} \right) \frac{\pi b^4}{8} = \frac{m b^2}{4}\]

Similarly, by analogy,

\[I_{YY'} = \frac{m a^2}{4}\]

Using perpendicular axis theorem,

\[I_\perp = I_{XX'} + I_{YY'}\]

\[= \frac{m a^2}{4} + \frac{m b^2}{4}\]

\[\therefore I_\perp = \frac{m}{4} (a^2 + b^2)\]