Question 11
Lengthier expressions

Q11. Consider an isolated system of length \(L\) and cross section \(A\) as shown. There is a moveable, adiabatic wall placed at \({L \over 2}\). Find net displacement of the wall, final temperatures and pressure. Consider adiabatic gas constant to be \(\gamma\). Also find work done be the gases on the left and right portions.


Idea:

\begin{tikzpicture}[color=lightgray][thick]
    \draw (0,0) rectangle (4,2);
    \draw[double] (2,0) -- (2,2);
    \draw (-.3,1) node {$A$}
      (1,.5) node {$T_1$}
      (1,1) node {$n_1$}
      (1,1.5) node {$P_1$}
      (3,.5) node {$T_2$}
      (3,1) node {$n_2$}
      (3,1.5) node {$P_2$}
      (2,-.4) node {$L$}
      ;
    \draw[<->] (0,-.2) -- (4,-.2);
    \draw[->] (4.2,1) -- (4.8,1);
    %
    \draw (5,0) rectangle (9,2);
    \draw[dashed] (7,0)--(7,2);
    \draw[double] (7.5,0) -- (7.5,2);
    \draw[<->] (7,-.2) -- (7.5,-.2);
    \draw
      (6,.5) node {$T_{f1}$}
      (6,1) node {$n_1$}
      (6,1.5) node {$P_f$}
      (8,.5) node {$T_{f2}$}
      (8,1) node {$n_2$}
      (8,1.5) node {$P_f$}
      (7.25,-.4) node {$l$}
      ;
    \end{tikzpicture}

Here, we have a process that is neither isothermal, nor adiabatic. It is clearly not a standard process. We shall get equal final pressures, but different temperatures.

Let \(l\) be the net displacement.

First, we shall conserve moles.

\[n_{1,inital} = n_{1,final}\]

We get two equations, by doing the same for \(n_2\).

Since the process as a whole(over the complete system) is adiabatic, we can apply the adiabatic law for it.

\[PV^\gamma = \text{constant}\]

Substituting relevant values from the equations we got before, we get,

\[l = {L \over 2}\left(\frac{P_{1}^{1\over \gamma} - P_2^{ 1 \over \gamma}}{P_{1}^{1\over \gamma} + P_2^{ 1 \over \gamma}}\right)\]

Hence, we also get,

\[P_f = \left( { P_{1}^{1\over \gamma} + P_2^{ 1 \over \gamma} \over 2} \right)^\gamma\]

Using the first two equations, we get,

\[T_f1 = {T_1 P_{1}^{1\over \gamma} \over P_1} \left( { P_{1}^{1\over \gamma} + P_2^{ 1 \over \gamma} \over 2} \right)^{\gamma-1}\]

\[T_f2 = {T_2 P_{2}^{1\over \gamma} \over P_2} \left( { P_{1}^{1\over \gamma} + P_2^{ 1 \over \gamma} \over 2} \right)^{\gamma-1}\]

By definition, we have

\[W = \int P dV\]

For the left side, we have,

\[P(x) = \frac{P_1}{\left(1+{2x \over L}\right)^\gamma}\]

Now,

\[W = \int_{0}^{l} \frac{P_1}{\left(1+{2x \over L}\right)^\gamma} A dx \]

Hence, we get

\[W_{left} = \frac{AL}{2^\gamma (1-\gamma)} \left[ P_1^{1\over\gamma} \left( P_{1}^{1\over \gamma} + P_2^{ 1 \over \gamma} \right)^{\gamma-1} - 1\right]\]

Work done by the right part is just the negative of this.

\[W_{right} = \frac{AL}{2^\gamma (\gamma - 1)} \left[ P_1^{1\over\gamma} \left( P_{1}^{1\over \gamma} + P_2^{ 1 \over \gamma} \right)^{\gamma-1} - 1\right]\]